Optimal control of molecular alignment in dissipative media.
نویسندگان
چکیده
We explore the controllability of nonadiabatic alignment in dissipative media, and the information content of control experiments regarding the bath properties and the bath system interactions. Our approach is based on a solution of the quantum Liouville equation within the multilevel Bloch formalism, assuming Markovian dynamics. We find that the time and energy characteristics of the laser fields that produce desired alignment characteristics at a predetermined instant respond in distinct manners to decoherence and to population relaxation, and are sensitive to both time scales. In particular, the time-evolving spectral composition of the optimal pulse mirrors the time-evolving rotational composition of the wave packet, and points to different mechanisms of rotational excitation in isolated systems, in systems subject to a decoherering bath, and in ones subject to a population relaxing bath.
منابع مشابه
Optimal control of rotational motions in dissipative media.
We apply optimal control theory to explore and manipulate rotational wavepacket dynamics subject to a dissipative environment. In addition to investigating the extent to which nonadiabatic alignment can make a useful tool in the presence of decoherence and population relaxation, we use coherent rotational superpositions as a simple model to explore several general questions in the control of sy...
متن کاملExtracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملIntense laser alignment in dissipative media as a route to solvent dynamics.
We extend the concept of alignment by short intense pulses to dissipative environments within a density matrix formalism and illustrate the application of this method as a probe of the dissipative properties of dense media. In particular, we propose a means of disentangling rotational population relaxation from decoherence effects via strong laser alignment. We illustrate also the possibility o...
متن کاملMultiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis
In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...
متن کاملLaser Pulse Control of Dissipative Dynamics in Molecular Systems
This work is dedicated to a further development of the density matrix theory and its application to the study of ultrafast laser pulse induced dynamics in molecular systems interacting with a thermal environment. Two topics are considered, first the so-called memory effects are analyzed which result from a reduced description of the molecular system excluding the environmental degrees of freedo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 126 3 شماره
صفحات -
تاریخ انتشار 2007